ACID MINE DRAINAGE

Mining & Water Pollution Issues in BC
Mining and Water Pollution

WATER IS ESSENTIAL TO LIFE ON OUR PLANET. A prerequisite of sustainable development must be to ensure uncontaminated streams, rivers, lakes and oceans.

As Canadians, we often take the presence of clean water for granted, forgetting its importance and assuming that it is always available. Unfortunately, the law and technology to protect this vital resource remains far from perfect. Increasingly, human activities threaten the water sources on which we all depend. Mining is one such activity. In fact, water has been called “mining’s most common casualty.”

There is growing awareness of the environmental legacy of mining activities that have been undertaken with little concern for the environment. The price we have paid for our everyday use of minerals has sometimes been very high. Mining by its nature consumes, diverts and can seriously pollute water resources. Changes in laws, technologies and attitudes have begun to address some of the most immediate threats posed by mineral development, but there are still many areas of mining practices and regulations that need to be addressed.

For example, according to the 1993 BC State of the Environment Report, mine drainage is “one of the main sources of chemical threats to groundwater quality” in the province. Groundwater supplies the drinking water of more than half the people living outside of Greater Victoria and Greater Vancouver.

For the sake of current and future generations we need to safeguard the purity and quantity of our water against irresponsible mineral development. We need to ensure the best pollution prevention strategies are employed in cases where the risks can be managed. But we also need to recognize that in some places mining should not be allowed to proceed because the identified risks to other resources are too great.

While there have been improvements in mining practices in recent years, significant environmental risks remain. Negative impacts

1 James Lyon, interview, Mineral Policy Center, Washington DC
2 BC State of the Environment Report 1993, pp.29-31
can vary from the sedimentation caused by poorly built roads during exploration through to the sediment, and disturbance of water during mine construction. Water pollution from mine waste rock and tailings may need to be managed for decades, if not centuries, after closure. These impacts depend on a variety of factors, such as the sensitivity of local terrain, the composition of minerals being mined, the type of technology employed, the skill, knowledge and environmental commitment of the company, and finally, our ability to monitor and enforce compliance with environmental regulations.

One of the problems is that mining has become more mechanized and therefore able to handle more rock and ore material than ever before. Consequently, mine waste has multiplied enormously. As mine technologies are developed to make it more profitable to mine low grade ore, even more waste will be generated in the future. This trend requires the mining industry to adopt and consistently apply practices that minimize the environmental impacts of this waste production.

"Once a mine is in operation water protection must remain the highest goal of the company, even if it means reduced mineral productivity. Adopting this common-sense ethic is the only way we can ensure that the golden dreams of mining do not turn into the nightmare of poisoned streams." 3

In the right place — and with conscientious companies, new technologies and good planning — many of the potential impacts are avoidable. In fact, most mine pollution arises from negligence not necessity.

Waste from the Mining Process

ORE IS MINERALIZED ROCK CONTAINING A valued metal such as gold or copper, or other mineral substance such as coal. Open-pit mining involves the excavation of large quantities of waste rock (material not containing the target mineral) in order to extract the desired mineral ore. The ore is then crushed into finely ground tailings for processing with various chemicals and separating processes to extract the final product. In Canada the average grades of mined copper are under 1 per cent, meaning that for every tonne of copper extracted 99 tonnes of waste material (made up of soil, waste rock and the finely ground “tailings”) must also be removed.

The amount of gold extracted per tonne of material disturbed is even less. Almost three tonnes of ore is needed to produce enough gold for one typical wedding band.4

The Canadian mineral industry generates one million tonnes of waste rock and 950,000 tonnes of tailings per day, totalling 650 million tonnes of waste per year. 5

After being removed, waste rock, which often contains acid-generating sulphides, heavy metals, and other contaminant, is usually stored above ground in large free-draining piles. This waste rock and the exposed bedrock walls from which it is excavated are the source of most of the metals pollution caused by mining in British Columbia. In other regions of North America tailings may also represent a major source of heavy metals contamination of waterways.

Types of Water Pollution from Mining
There are four main types of mining impacts on water quality:

1. Acid Mine Drainage
Acid Rock Drainage (ARD) is a natural process whereby sulphuric acid is produced when sulphides in rocks are exposed to air and water. Acid Mine Drainage (AMD) is essentially the same process, greatly magnified. When large quantities of rock containing sulphide minerals are excavated from an open pit or opened up in an underground mine, it reacts with water and oxygen to create sulphuric acid. When the water reaches a certain level of acidity, a naturally occurring type of bacteria called *Thiobacillus ferroxidans* may kick in, accelerating the oxidation and acidification processes, leaching even more trace metals from the wastes. The acid will leach from the rock as long as its source rock is exposed to air and water and until the sulphides are leached out – a process that can last hundreds, even thousands of years. Acid is carried off the minesite by rainwater or surface drainage and deposited into nearby streams, rivers, lakes and groundwater. AMD severely degrades water quality, and can kill aquatic life and make water virtually unusable.

2. Heavy Metal Contamination & Leaching
Heavy metal pollution is caused when such metals as arsenic, cobalt, copper, cadmium, lead, silver and zinc contained in excavated rock or exposed in an underground mine come in contact with water. Metals are leached out and carried downstream as water washes over the rock surface. Although metals can become mobile in neutral pH conditions, leaching is particularly accelerated in the low pH conditions such as are created by Acid Mine Drainage.

3. Processing Chemicals Pollution
This kind of pollution occurs when chemical agents (such as cyanide or sulphuric acid used by mining companies to separate the target mineral from the ore) spill, leak, or leach from the mine site into nearby water bodies. These chemicals can be highly toxic to humans and wildlife.

4. Erosion and Sedimentation
Mineral development disturbs soil and rock in the course of constructing and maintaining roads, open pits, and waste impoundments. In the absence of adequate prevention and control strategies, erosion of the exposed earth may carry substantial amounts of sediment into streams, rivers and lakes. Excessive sediment can clog riverbeds and smother watershed vegetation, wildlife habitat and aquatic organisms.6

6 Carlos De Rosa and James Lyon, ibid, pp. 61-75
After the waste rock is removed and the ore is extracted, the ore must be processed to separate the target mineral from the valueless portion. Once the minerals are processed and recovered, the remaining rock becomes another form of mining waste called tailings. Mine tailings often contain the same toxic heavy metals and acid-forming minerals that waste rock does. Tailings can also contain chemical agents used to process the ores, such as cyanide or sulphuric acid. Tailings are usually stored above ground in containment areas or ponds (and in an increasing number of underground operations they are pumped as backfill into the excavated space from which they were mined.)

If improperly secured, contaminants in mine waste can leach out into surface and groundwater causing serious pollution that can last for many generations. As will be illustrated below, this is mining’s legacy in many parts of BC and around the world.

The Legacy of Acid Mine Drainage

AMD IS THE MINING INDUSTRY’S GREATEST environmental problem and its greatest liability, especially to our waterways. An acid-generating mine has the potential for long-term, devastating impacts on rivers, streams and aquatic life, becoming in effect a “perpetual pollution machine.”

At the abandoned Mount Washington mine on Vancouver Island, open pits of sulphide-bearing pyrite ore lie exposed to the elements, along with 130,000 tonnes of waste rock. The sulphide sulphur in the ore continually reacts with air and water to form sulphuric acid, which leaches out the heavy metals, especially copper. This toxic copper leachate passes into Pyrrhotite Creek, then Murex Creek and from there into the whole Tsolum river watershed.

“Copper is the dreaded enemy of young salmonids,” says Father Brandt, a local activist, fisherman, and director of the Steelhead Society. “It is a scientific fact that the amount of copper that finds its way yearly into the Tsolum watersheds kills young salmon and deters adult salmon escaping back to the river to spawn.”

Washington DC
watersheds kills young salmon and deters adult salmon escaping back to the river to spawn."

In the US, AMD and other toxins from abandoned mines have polluted 180,000 acres of reservoirs and lakes and 12,000 miles of streams and rivers.8 It has been estimated that cleaning up these polluted waterways will cost US taxpayers between $32 billion and $72 billion.9

In Canada, there are an estimated 351 million tonnes of waste rock, 510 million tonnes of sulphide tailings, and more than 55 million tonnes of other mining sources which have the potential to cause AMD.10 Cleanup at existing acid-generating mines in Canada will cost between $2 billion and $5 billion.11

Not only is AMD treatment and collection very costly to the environment, it is a big bill for industry. According to T.D. Pearse Resource Consulting, “Site stabilization costs can be as high as $410,000 per hectare.”12 The U.S. Bureau of Mines estimates that the US industry spends over $1 million each day to treat acidic mine water.13

Unfortunately, the province of BC is prominent on maps identifying Canada’s AMD pollution sites. The Mount Washington mine is only one of 25 mines (operating, closed and abandoned) in BC that are currently acid-generating.

9 Jessica Speart, “A Lust for Gold,” Mother Jones (Jan-Feb 1995), p.60
10 Government of Canada, ibid, pp. 10-11
11 Financial Post, November 17, 1994
13 Robert Kleinman, ibid.
To answer these and other critical questions on how the rock will react to disturbance, different tests are used. Generally these tests are referred to as “static” and “kinetic.”

Static Testing

Static testing is the first step in understanding AMD potential at a proposed mine. This level of tests involves the description of different characteristics of rock types at the mine site, with an eye to finding those components that are likely to generate acid and those that may buffer or neutralize the acidic potential in the mine waste.

One of the main preliminary tests run in assessing acid potential is called Acid Based Accounting (ABA). This process measures the bulk amounts of acid generating and acid neutralizing materials in samples drawn from key areas in the proposed minesite. Minerals containing sulphur, particularly sulphides such as pyrite, have the potential to generate acidity when exposed to air and water; on the other hand, other groups of minerals,

Metals and the Environment

Depending on geological factors, the metals found in mining waste may include arsenic, cobalt, copper, cadmium, chromium, gold, iron, lead, silver and zinc. Metals are essential to life in trace amounts. In higher concentrations, however, they can be highly toxic.

Metals tend to dissolve and mobilize more easily in the acidic waters associated with AMD. For many rock types, metal leaching will only be significant if the acid levels drop below 5.5 or 6 on the pH scale. However, this is not necessarily the case for elements like molybdenum, zinc, cadmium, antimony and arsenic that can remain soluble at neutral or alkaline pH values. Carried in water, the metals can travel long distances, resulting in the contamination of streams and groundwater.

When metals are in a dissolved form they are more readily absorbed and accumulated by plant and animal life, and therefore generally more toxic than when they are in solid form. “Sub-lethal” negative effects can occur as these metals concentrations settle into streams, stream beds and banks. Because the transfer or “uptake” of metals can occur to animal tissues and plants, they can be passed along to other living things in the food chain.

20 Bill Price and John Errington, Draft Guidelines for Metal Leaching and Acid Rock Drainage at Mine Sites in BC, October 1997, MEI, Victoria
Acid Mine Drainage: Prevention is the key

Acid Mine Drainage is a watershed issue of importance to the full range of public stakeholders. To begin to address the very real problems posed by AMD, the government must:

- prevent future loss of aquatic habitat to Acid Mine Drainage,
- inventory and cleanup existing acid generating mine sites in BC,
- improve public access to information on monitoring and enforcement of AMD treatment and reclamation, and
- prevent future AMD by improving environmental risk assessment and adopting a liability prevention approach to future AMD mine assessments.
Acid Mine Drainage Sites

- **Actual**
- **Potential**

Potentially Acid Generating Mines

Operating Mines
1. Elk
2. Huckleberry
3. Quinsam
4. Snip
5. South Kerness

Proposed Mines
8. Cirque
9. Harmony Gold (Cinola)
10. Kutcho Creek
11. Lexington
12. Lumby Muscovite
13. Mount Milligan
14. Prosperity (Fish Lake)
15. Red Chris
16. Red Mountain
17. Telkwa Coal
18. Eskay Creek
19. Gibraltar
20. Myra Falls
21. QR Gold
22. Sullivan
23. Anyox
24. Baker
25. Bell
26. Big Bull
27. Britannia
28. Duthie
29. Equity
30. Giant Nickel
31. Goldstream
32. Granisle
33. Island Copper
34. Johnny Mountain
35. Kitsault
36. Mount Washington
37. Premier
38. Saint Eugene
39. Samatosum
40. Silver Butte
41. Silver Standard
42. Tulsequah Chief (Redfern)

Recently Closed
6. Boss
7. Scottie Gold
8. Cirque
9. Harmony Gold (Cinola)
10. Kutcho Creek
11. Lexington
12. Lumby Muscovite
13. Mount Milligan
14. Prosperity (Fish Lake)
15. Red Chris
16. Red Mountain
17. Telkwa Coal
18. Eskay Creek
19. Gibraltar
20. Myra Falls
21. QR Gold
22. Sullivan
23. Anyox
24. Baker
25. Bell
26. Big Bull
27. Britannia
28. Duthie
29. Equity
30. Giant Nickel
31. Goldstream
32. Granisle
33. Island Copper
34. Johnny Mountain
35. Kitsault
36. Mount Washington
37. Premier
38. Saint Eugene
39. Samatosum
40. Silver Butte
41. Silver Standard
42. Tulsequah Chief (Redfern)

Sources: MEI Acid Rock Drainage Policy, June 1997; Draft Guideline for Metal Leaching and ARD at Mine Sites in BC, BC Ministry of Employment and Investment, Reclamation Section; BC Minfile, BC Ministry of Employment and Investment, Geological Survey Branch.
success using this method. The problems in applying the practice to BC are multiple.

- The science in predicting the highly complex geochemical variables at work is unreliable at this time.
- The process of blending is subject to human error in identifying and correctly mixing the two (acid/alkaline) components.
- There is a lack of any systematic track record to allow for comparisons between blended dumps tried in other regions with newly proposed dumps.22

For these reasons conservationists view blended dumps as an experimental technology at best, that should not be used in sites where failure will pose ecological or economic costs beyond the minesite.

One worrisome approach to AMD prevention is the concept of submarine disposal of mine waste. Some mining companies say dumping the tailings and waste rock into the oceans is a cost-effective and safe way of disposing of it. The concept is that the waste rock is deposited below the surface, where the lack of oxygen and sunlight eliminates chemical reactions.

While it is true that the lack of oxygen prevents the acidification process from starting, there may be other affects on aquatic life on the sea floor. BHP Minerals’ Island Cooper Mine near Port Hardy utilized marine dumping of its wastes for years until the mine closed in 1996. Studies of the aquatic life on the sea floor at the site show low abundance and diversity of organisms. 23

22 Price and Errington, ibid, pp. 37-38
The Tsolum River Experience: Short-term mine, long-term costs

THE TSOLUM RIVER ON VANCOUVER ISLAND used to run clean and clear from its source near Mount Washington to the Courtenay estuary. For thousands of years, the river provided rich runs of coho, pink, chum and cutthroat salmon, as well as steelhead trout that weighed up to 23 pounds.

The river was rich with life, sustaining human communities and the entire ecosystem through which it flowed. Impacts on the river started in the post war era when logging and irrigated agriculture moved into the watershed, gravel was mined from the riverbed in the lower reaches and then, in 1964, the Mt Washington Copper Mining Co. moved into the upper Tsolum watershed.

The company began a small open-pit copper mine adjacent to the Tsolum River. During three years of operation, the company excavated 360,000 tonnes of ore and 940,000 tonnes of waste rock before abandoning the mine in 1966. It was a small mine, high up in the mountain, disturbing an area of only 13 hectares. But it left behind a toxic legacy that has spread far beyond the mine’s perimeter.

Father Charles Brandt moved to the Tsolum River area back in 1965 – “when they were still bringing the ore down,” as he recalls. Over the past 30 years Brandt has watched the demise of the fishery. His observations are backed up by a recent government research report that states: “After 1966, the coho escapement has declined steadily from 15,000 to a low of 14 in 1987. The coho are particularly vulnerable to toxicity caused by acid mine drainage as they reside in the system for up to 14 months after hatching.” Trout are thought to be as vulnerable to the changes in water quality because of their long residence in fresh water.

Despite expensive, publicly funded restocking efforts, government reports show “virtually no salmon” living in or returning to the Tsolum River. And, says Brandt, “the wonderful steelhead runs are also gone from the river—a tremendous loss.”

24 Father Charles Brandt, op cit

Despite expensive, publicly-funded restocking efforts, “virtually no salmon” are living in or returning to the Tsolum River.
“By 1985”, says Father Brandt, “the Tsolum River was as good as dead.” With its demise came the loss of the Tsolum river fishery of pinks, coho, chum and steelhead, which had generated as much as $2 million per year for the community.

The government’s watershed assessment concluded that “the fisheries resource is believed to have declined [by 90 per cent] predominantly because of Acid Mine Drainage from Mount Washington.”26 It has been estimated that the loss of the fishery, combined with millions of taxpayer dollars spent for mine clean-up, have cost at least $60 million so far.

The Britannia Mine:
Costs of Coastal Contamination

ANACONDA OPERATED ITS BRITANNIA COPPER mine near Squamish from 1927 to 1974, but the abandoned mine’s AMD threatens to pour into Howe Sound forever. Every day, millions of litres of contaminated water from the mine flow into the ocean inlet via Britannia Creek and a large underwater outflow pipe.

A BC Environment spokesperson stated in 1996 that “there’s no life in the creek,” and added that the mine’s toxic water has had a similar effect on and around Britannia Beach.

Robert McCandless, a mining specialist with Environment Canada, has said that “there are huge areas devoid of life” and that the mine is largely responsible for the disappearance of fish and shellfish from the area. By May 1997, it was reported that the only sign of life in Britannia Creek is some algae on rocks.27

For many months of the year, rainwater and snowmelt pour into the mine and, through the AMD process, leach metals and acidic water out

26 ibid, p. viii
of some 160 kilometres of tunnels. The copper and zinc-laden AMD pours into the ocean—as it has since the mine was abandoned.

Estimates of the clean-up costs for Britannia mine vary. Ian MacDonald, a senior environmental protection officer with the BC Environment ministry has estimated it could be several tens of millions.” 28

Equity Silver: Long-term high costs of failed pollution prediction

SOUTH OF HOUSTON, BC

LONG-TERM landowner Glenda Ferris has, over the last 16 years, learned about AMD issues firsthand. She’s the first downstream user of water affected by Placer Dome’s Equity Silver mine, which operated from 1980 to 1994. That operation resulted in 42 million tonnes of tailings and 80 million tonnes of waste rock in three dumps that are acid-generating. The tailings are kept behind a large dam and under water cover that must be maintained forever. The waste rock dumps have been covered with a $5 million compacted glacial till layer in an effort to slow down the infiltration of water and oxygen that would feed the AMD process (see below).

Ferris, a member of the Equity Silver Mine Surveillance Committee since 1982, scoffs at the idea frequently put forward that mining is a temporary land use. “If you’re dealing with open pit mines, you’re going to have permanent transformation of the land.” 29

The Equity Mine is at the top of two watersheds, where streams flow into lakes on either drainage and from there into the Bulkley River. The Bulkley and Skeena Rivers are among the richest salmon fisheries in BC. Four kilometres of streams and nearly one hundred hectares of wetlands have been lost to the minesite, tailings impoundments, waste rock dumps and runoff collection systems. Contamination of the local lake and stream sediments has been documented and will remain an ongoing issue.

The acid-drainage from the Equity mine flowed into Buck Creek in 1982 until a partial containment system was constructed. Again in 1983 AMD affected water quality in Buck Creek and Goosley Lake. In 1983 the company plead-

28 quoted in Margaret Munro, “Potent Bacteria Utilized to Harvest Metals While Cleaning Water from Britannia Mine,” *Vancouver Sun* (June 13, 1996)
29 Interview with Glenda Ferris, May 1997
Telkwa: Assessing The Real Costs of Mining

THE ONGOING LEGACIES OF MOUNT WASHINGTON Mine, Britannia Mine, Equity Silver Mine and other acid-generating mines in B.C. cannot be overlooked when new projects like Manalta’s Telkwa Coal Mine are considered.

Ivan Thompson, a Smithers resident and director of Driftwood Foundation, says, “acid drainage is a major issue at the proposed Telkwa Coal project. They want to build four open pits, plus some ‘satellite pits’ within a few kilometres of two rivers: the Telkwa River and the Bulkley River. There is acid drainage material there, and fault fractures in the bedrock close to the river. The project has a high probability for AMD.”

Not only are there some communities that draw their water from the rivers, says Thompson, but these are tributaries that flow into the Skeena River. The Skeena salmon fisheries are second only to the Fraser fisheries in importance in the province. “This is a tremendously important salmon fishery and several First Nations have traditional jurisdiction over the area,” Thompson says.

At the proposed Telkwa open-pit coal mine, Manalta Coal Ltd. intends to mine up to 1.5 million tonnes of high quality, low ash, bituminous coal per year for the next 25 years. New infrastructure at the site will include a five kilometre haul road, an eight kilometre haul road, a bridge over the Telkwa River, power
lines, a coal washplant, mine service facilities, and a loading facility.

The company proposes a tailings disposal area of 100 hectares for the duration of the mine. Admitting that certain waste material has the potential to generate acid rock drainage, the company’s Project Application claims that “selective handling of specific materials will alleviate this risk. Mine plans have been developed to minimize the amount of material that can be backfilled into the pits. Manalta also proposes a comprehensive reclamation plan in which waste rock dump areas will be recontoured and covered with previously salvaged till and soil material that will support future land uses such as forestry and agriculture...Most of the final pit areas that cannot be backfilled will be reclaimed to wetlands, small lakes, and isolated rock walls.”

The language sounds reassuring, but needs a translation.

In her April 1997 review of Manalta’s project for the B.C. Environmental Assessment Office, Rosemary Fox identified several unacceptable features of the mining proposal. She calls the decision to use blended dumps at Telkwa Mine “especially disturbing”, in view of the fishery values at stake. Fox points out: “The lower layers will be particularly vulnerable to the onset of acid generation as water from [precipitation] accumulates and creates wet-dry cycles at ground level. Acid generating ‘hotspots’ are also likely in unevenly blended areas within the dump.”

The company’s plan to use two unproven measures — blended dumps and dumps with compacted till covers — fails to provide assurance that AMD can be prevented.

“I think this [Telkwa Mine] has the potential to have a real impact on water quality and aquatic biological systems,” says Rosemary Fox. “We’ve got a really important fisheries resource in the Telkwa and Bulkley river systems. These are major salmon and steelhead rivers, and they are likely to be put in jeopardy by this project.”

Beyond its impact on the local watershed, the coal from Telkwa has other environmental implications. Coal is one of the largest

32 Rosemary Fox, correspondence to the BC Environmental Assessment Office, Telkwa Review April 1997
contributors to greenhouse gases and global climate change.

As Rosemary Fox observes in her comments on Manalta’s proposed Telkwa Coal Project, a proper environmental assessment needs to weigh all the costs against all the benefits.

Mining, Water and the Law

In BC, the regulations for preventing and managing the impacts of mine waste are captured in a range of laws including the federal Fisheries Act, the BC Waste Management Act, the BC Mines Act, and both the BC and Canadian Environmental Assessment Acts.

Unfortunately, significant reductions in federal and provincial government budgets have affected the capacity to administer, monitor and enforce existing laws and policies. As a result, there have been ongoing water quality and waste management problems at many mines, including the recently approved Huckleberry and South Kemess mines. There have been a number of preventable accidents including massive sediment loading into fish-bearing streams, the building of roads with acid generating waste rock, non-compliance with waste handling plans, and repeated violations of water quality standards.

Alan Young, of the Environmental Mining Council of BC, notes that “over the last year, we have seen an inability in regional government
Acid Mine Drainage: What can we do?

As concerned individuals committed to the protection and respect of our natural world, we must:

- identify operating or abandoned mine sites in our regions,
- learn about how mine sites are being monitored, what permits have been issued, and how citizens are involved in decision making,
- get more information about AMD and other mining issues across BC and in our community, and
- insist that prevention of AMD is the only acceptable and responsible strategy.

For further information on mining issues, please contact:
Environmental Mining Council of BC.
1216 Broad Street Victoria, BC V8W 2A5
Phone: 250-384-2686, Fax: 250-384-2620
E-mail: emcbc@miningwatch.org

BC Wild and Environmental Mining Council of BC wish to thank Rockefeller Brothers Fund for a grant which assisted in the publication of this document. The opinions expressed in this report are those of the author(s) and do not necessarily reflect the views of Rockefeller Brothers Fund.

Photos: Front cover: Tat Wild Back cover: Ric Careless
Design & production: Eye Design Inc. Printed in Canada on recycled paper.